Large scale Recommendations at Instagram

On behalf of Instagram Relevance

CONFIDENTIAL

01 Context

02 Modeling

03 Infra

Agenda

CONFIDENTIAL

01 Context

Trends in Recommendation Model Scaling

- In the past 3 years, IG head models have scaled 1000x from <1M FLOPs
- In the same period, training data has grown 5X and feature input size has grown 2X.
- Model Compute continues to be scaled at a rapid clip with Transformer-like architectures

Insight - Keep scaling model complexity constrained by performance improvements and high ROI techniques.

The largest product improvements have stemmed from these step change innovations

CONFIDENTIAL

A long way to go still

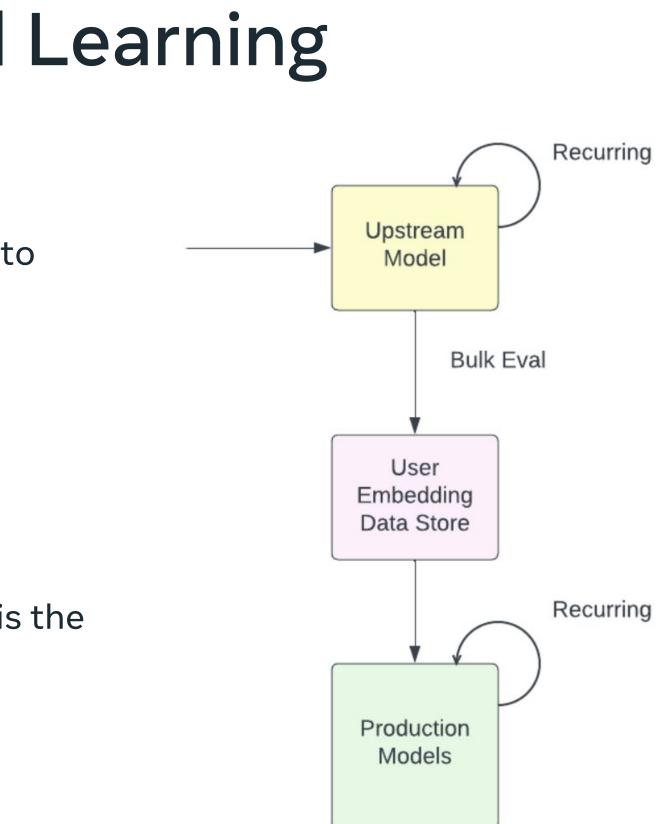
- We're still capturing only a fraction of available user and ecosystem signals.
- There are still many parts of our recommender system that are understudied
 - Thinking through data feedback loops. Ο
 - Blending to optimize for overall user experience. Ο
- Balancing short term, long term interests with exploration.
- Embracing transformative architectures as they become available.

02 Modeling

Learning Strategy: Foundational Learning

This type of meta modeling architecture provides incredible benefits:

- **Multi modality:** Providing opportunities to our models to generalize to broader user understanding.
- **Cold start cases:** This setup helps us close the feedback loop by leveraging a holistic view of engagement.
- **Consistent baseline quality:** Perhaps the most important value add is the ability to provide consistency in recommendations.

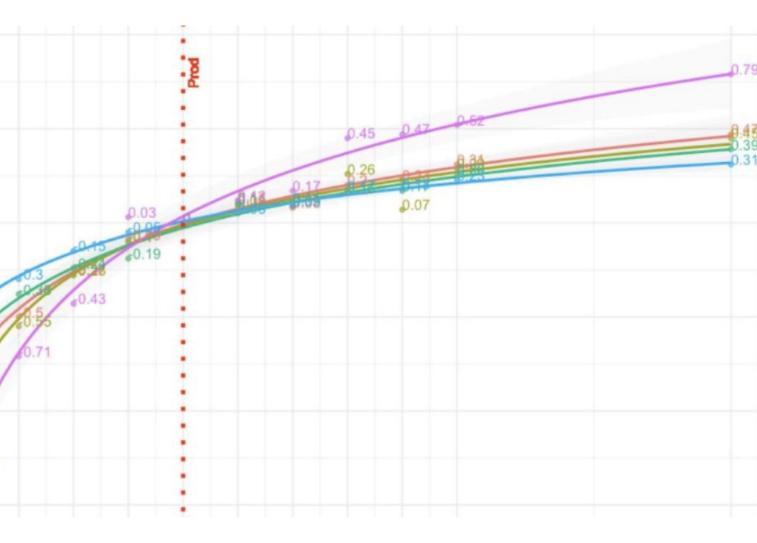


Scaling memoization

- Better retention of available entities (collisions, optimizer, dimension, ..) Ο
- Longer retention and lookback window for users/medias. Ο
- Higher sparsity, higher chance of hash collision because we are dealing with much bigger range Ο of entities.
 - Solution: Decompose high cardinality IDs (semantic IDs)
- Encode heterogeneously (different surface, media type) Ο
- Loss-less knowledge transfer between stages Ο
- Data preprocessing changes with rich representation Ο

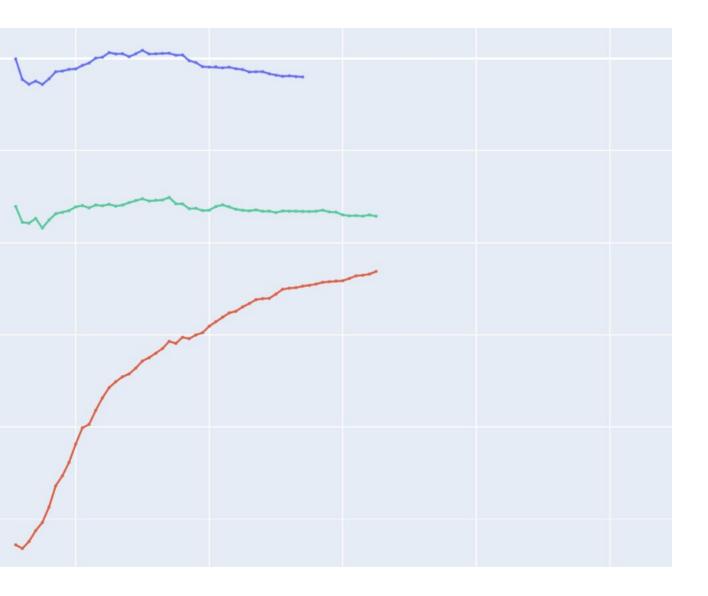
Data Upsampling

- Increasing data coverage for all key entities is a upstream of many other ideas and techniques that can be implemented in modeling.
- High cardinality sparse features have a high variance based on the sample size.
- High complexity when it comes to sampling strategy (across entities, event types, ..)
- Increases the stress on pooling logic.



Larger Hash Size

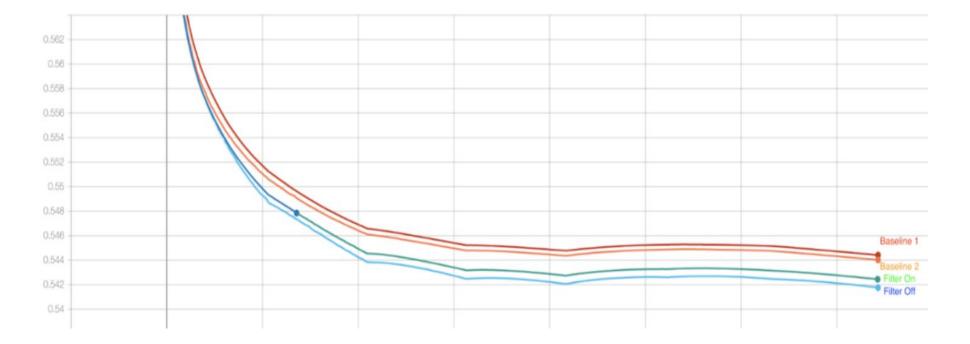
- Increase hash_size for two sparse features from 500K to 50M (100x)
- There are more sophisticated ways to manage sparse collisions
 - They usually require additional memory to keep the correct accounting.
 - The cut-off between zero collision and controlled collision is another hyperparameter
 - \circ $\,$ Uncertainty where to allocate zero collisions



Hash Collision Management

Rare-ID Filtering

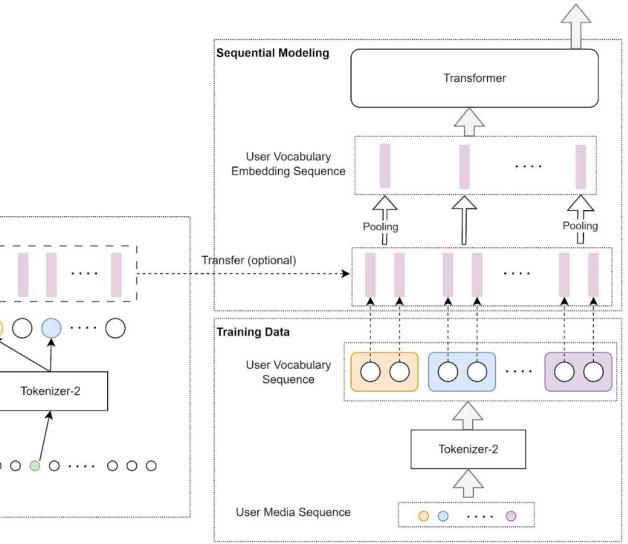
- Uncertainty and variance is baked in rare-IDs.
- It needs to be evaluated against the performance on upsampled data.
- How else should we handle these rare IDs.



Modality-based Representation

- Challenges of ID-based representations
 - Entity ids are monotonically increasing
 - Embedding table size is bounded by GPU memories
- Proposal: modality-based representation
 - Multi modal semantic representation
 - Transfer learning the vocabulary
 embeddings to main model to warm up
 representations.

Pre-train Tokenizer	
Vocabulary Embedding Table	
Vocabulary IDs	
	-
Media IDs	000

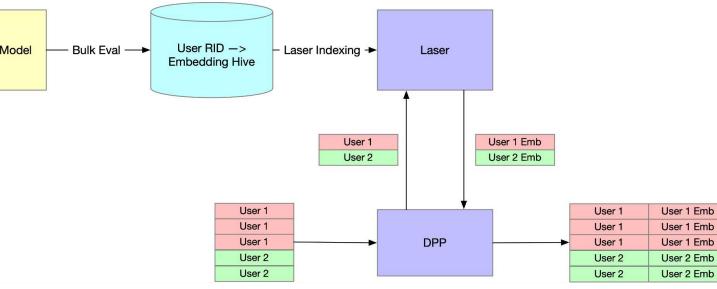


User Embedding to SUM

Downstream Model Experimentation

- Existing cycles takes around ~15 days to measure impact on downstream model. It consists of
 - Training a promising upstream model
 - Setting up recurring embedding export
 - Setting up exported embeddings for feature extraction
 - Get capacity approval for feature extraction
 - Begin extraction & wait for training data collection
 - Train downstream model with newly populated embedding

Upstream Model



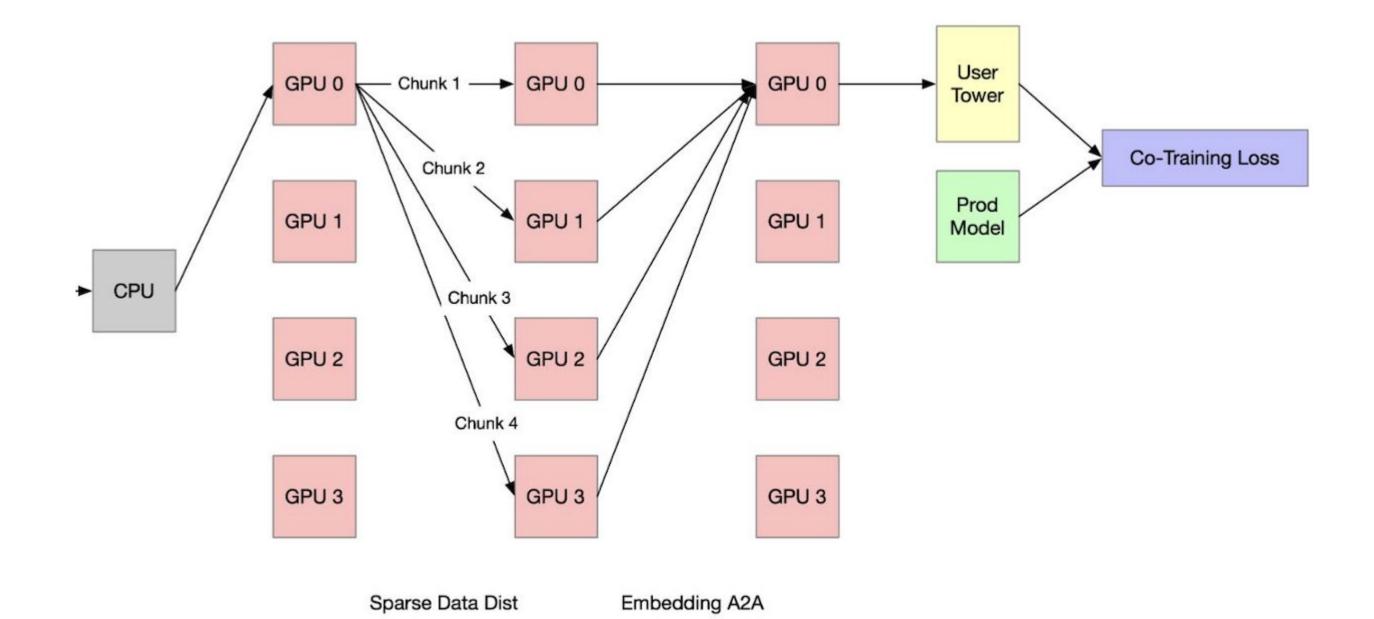
Improving Responsiveness

- Multi-faceted problem:
 - $\circ~$ Chains of models and heuristics
 - $\circ~$ Inputs freshness and lag variance
 - \circ $\,$ Weights freshness and trends $\,$
 - Content freshness and uncertainty
 - Delivery mechanisms
- For effective experiments you need to act on the entire stack at once.
- Different products are sensitive to different levers and techniques.
- There could be an offline and online path

k at once. niques.

03 Infra

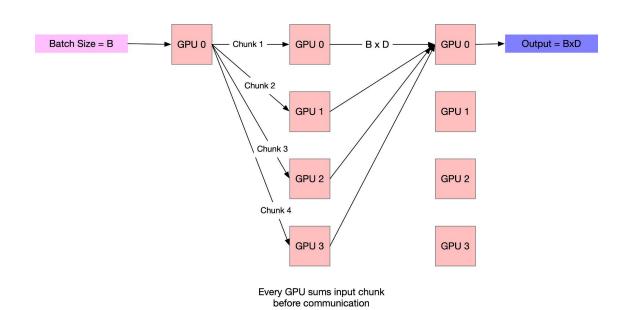
Training Overview



Pooling vs Sequence Embeddings

Pooling Embeddings

- Pooling Embeddings put less stress on GPU comms because each GPU is sum output embedding locally before sending to destination.
- Increasing length for pooling feature doesn't lead to explosion in compute because output of pooling features is always BxD irrespective of length.



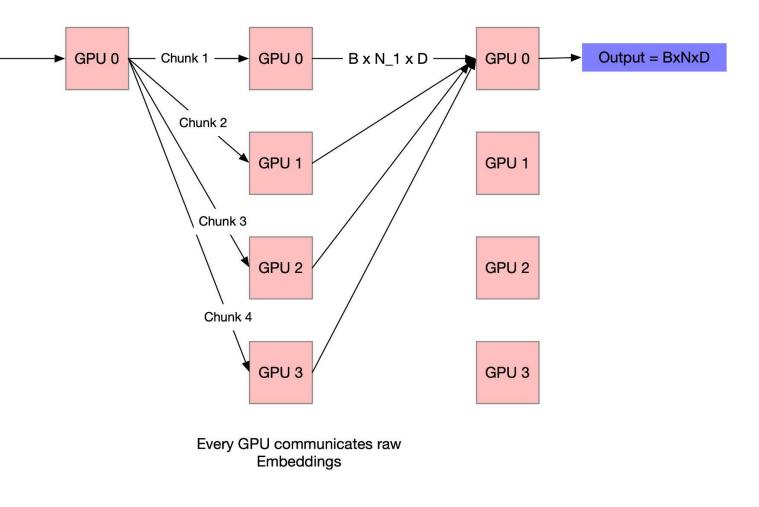
Sequence Embeddings

• Sequence scale w.r.

Batch Size = B

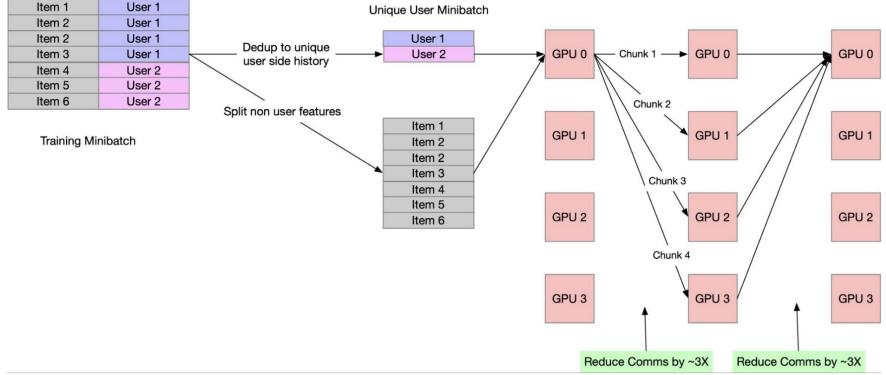
Sequence Embeddings comm requirements

scale w.r.t. input sequence length.



Solving Comms Bottlenecks

- Recommendation data serve & log data in batches - i.e. a user is served 5-8 recommendations at at time.
- User features for all these items remain the same due to nature of serving requests.
- We can exploit both properties to reduce comm bottleneck.
- This technique can lead to more than ~3X increase in Trainer QPS.



Challenges

- Training reliability & resource usage continues to be a great challenge. Increased load on network, compute & bandwidth leads to death by thousand cuts.
 - Low reliability means slower iteration cycles hence slower TTM (time to market) Ο
 - Low reliability also means model freshness is affected in prod
- Embedding stability is paramount to obtain stable online wins
 - Constraining embedding space in model only guarantees temporary safety Ο
 - Changing data patterns can introduce more model stability issues Ο
- Increasing output embedding dimension gives higher gains but also leads to higher serving cost
 - Experimentation shows 2x, 3x embedding dim show significant gain but with major infrastructure cost

Meta Al

